An interesting property of symmetric matrices
If $A$ is symmetric, then for any vectors $x, y$, $x'Ay = y'Ax$. Proof:j
\begin{align*} ( x'Ay )' &= y'A'x \\ &= y'Ax \end{align*}An interesting property of symmetric matrices
If $A$ is symmetric, then for any vectors $x, y$, $x'Ay = y'Ax$. Proof:j
\begin{align*} ( x'Ay )' &= y'A'x \\ &= y'Ax \end{align*}
0 comments:
Post a Comment